If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2=11078
We move all terms to the left:
11x^2-(11078)=0
a = 11; b = 0; c = -11078;
Δ = b2-4ac
Δ = 02-4·11·(-11078)
Δ = 487432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{487432}=\sqrt{4*121858}=\sqrt{4}*\sqrt{121858}=2\sqrt{121858}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{121858}}{2*11}=\frac{0-2\sqrt{121858}}{22} =-\frac{2\sqrt{121858}}{22} =-\frac{\sqrt{121858}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{121858}}{2*11}=\frac{0+2\sqrt{121858}}{22} =\frac{2\sqrt{121858}}{22} =\frac{\sqrt{121858}}{11} $
| -4a+34=18 | | -3|x+4|=21 | | 175=30-x | | 5x-9=-3x20 | | 3=5(a-4) | | -10+a+4-5=11 | | 4x+1+7x+3+65=90 | | 67-9+3=2x-2 | | 20+8(q)-11=-12 | | 10+(x+1)=4x | | 274=51-w | | 7x-3(3x-15)=59 | | 1/3+5/8x=46 | | 3x-4+1=-2x+-5+5x | | -113+9x=109+15x | | 3q-6q-(-4q)=9 | | 32-w=177 | | x-2+2x+6=90 | | −8(x+1)+2x=−32 | | 6x+x+x=26 | | a+1.2=1.9 | | 6y=(2-y) | | 5x+20-3x-5=x-13 | | 7x-1+79=21x+8 | | 2w-13=-8w+27 | | x-7=5x-32 | | 18.20x-6=3.20 | | 3m+4=−14 | | 26=6+4u | | 9=3r-(-3) | | 100-v=260 | | 3×x+4=3x+4 |